Synthesis and spectroscopic characterisation of $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{5}\left(\mu_{3}-\mathrm{Se}\right)_{2}\left(\mathbf{P}^{\wedge} \mathbf{P}\right)[\mathbf{P} \sim \mathbf{P}=\mathrm{dppm}$ or dppe]: crystal structure of $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{5}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{dppm})$

Pradeep Mathur *, P. Sekar
Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 076, India

Received 4 April 1996; revised 26 June 1996

Abstract

The room temperature reactions of $\mathrm{CpCOFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ (1) with bis(diphenylphosphino)methane and $1,2-$ bis(diphenylphosphino)ethane gave the phosphine derivatives of mixed-metal chalcogen clusters, $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{5}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{P} \sim \mathrm{P})[\mathrm{P} \sim \mathrm{P}=$ dppm (2), dppe (3)), respectively. Compounds 2 and 3 have been characterised by \mathbb{R}, and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and ${ }^{71} \mathrm{Se}$ NMR spectroscopy and their compositions have been confirmed by elemental analysis. The structure of 2 has been elucidated by X -ray crystallography. Compound 2 crystallised in the monoclinic, space group $P 2_{1} / n$, with $a=20.705(5), b=11.603(4), c=32.528(9) A, \beta=107.38(2)^{\circ}$, $V=7108(4) \AA^{3}, Z=8, D_{c}=1.716 \mathrm{Mgm}^{-3}$ and $R=0.053(R w=0.057)$. The structure consists of an $\mathrm{Fe}_{2} \mathrm{CoSe}_{2}$ metal core in which the dppm ligand bridges Co and one of the Fe atoms.

Keywores: Iron; Cobalt; Selenium; Phosphorous; Carbonyl; Cluster

1. Introduction

Bridging chalcogens play an important role in the synthesis and stabilisation of transition metal cluster compounds, including mixed-metal clusters [1-5]. Work on the use of S, Se and Te has shown that cluster syntheses and structures of products formed depend on which chalcogen is used [6]. The availability of mixedchalcogenide transition metal carbonyl complexes, as starting materials for cluster growth reactions, has given additional variety to the types of cluster which can be obtained by using chalcogens as bridging ligands [7-9]. One class of compounds which are convenient as starting materials for the preparation of metal-chalcogenide clusters is $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{EE}^{\prime}\right)$, where $\mathrm{E}, \mathrm{E}^{\prime}=\mathrm{S}, \mathrm{Se}$ or Te [7-12]. The simplest type of cluster growth products obtained from these are compounds of the form $\mathrm{Fe}_{2} \mathrm{M}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{E}\right)\left(\mu_{3}-\mathrm{E}^{\prime}\right)$, where $\mathrm{M}=\mathrm{Fe}$, Ru , which

[^0]are formed by a formal addition of M across the reactive $\mathrm{E}-\mathrm{E}^{\prime}$ bond of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-E E^{\prime}\right)$, followed by one $\mathrm{Fe}-\mathrm{M}$ bond formation to give a square-pyramidal core of Fe_{2} MEE', where M occupies a basal site $[7,8,13-16]$. There are instances, however, where the heterometal atom occupies the apical site of the square pyramid [11,17-19]. The cluster $\mathrm{CpRhFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Te}\right)_{2}$ exists in solution as an equilibrating mixture of the two forms, one in which the rhodium is in a basal site and the other in which it occupies the apical site of the $\mathrm{RhFe}_{2} \mathrm{Te}_{2}$ square pyramid [20]. Reactions of $\mathrm{CpRhFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\right.$ $\mathrm{Te})_{2}$ with PPh_{3} yield two isomers: in the major isomer, the phosphine is bonded to an $\mathbf{R h}$ atom while the minor isomer is proposed to contain the $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)$ moiety (Fig. 1). In an earlier report, we described the synthesis and structures of $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ (1) and $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{Se}\right)$, both of which have the Co atom occupying the apical site of the squarepyramidal core (type A) [9]. The second form, in which the Co occupies a basal site (type B), is not observed (Fig. 2). Here we describe the reactions of 1 with the bidentate phosphines bis(diphenylphosphino)methane

Fig. 1. Reactions of the two isomers of $\mathrm{CpRhFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Te}\right)_{2}$ with PPh_{3}.
and 1,2 -bis(diphenylphosphino)ethane, along with the single crystal X-ray diffraction analysis of $\mathrm{CpCOFe}_{2}(\mathrm{CO})_{5}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{dppm})$ (2).

2. Results and discussion

When a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing 1 and bis(diphenylphosphino) methane (dppm) or 1,2-bis(diphenylphosphino)ethane (dppe) was stirred at room temperature for 36 h , dark red $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{5}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{dppm})$ (2) or dark green $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{3}\left(\mu_{3}{ }^{2} \mathrm{Se}\right)_{2}(\mathrm{dppe})$ (3) was obtained as the major product after chromatographic work-up (Scheme 1) Compounds 2 and $\mathbf{3}$ have been characterised by IR and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and ${ }^{77} \mathrm{Se} \operatorname{NMR}$ spectroscopy. Their elemental compositions have been confirmed by elemental analysis.

An ORTEP diagram of the molecular structure of 2 is shown in Fig. 3. The structure of 2 can be described as consisting of an $\mathrm{Fe}_{2} \mathrm{CoSe}_{2}$ metal core and a dppm group bridging Co and one of the Fe atoms. The Fe atom associated with the dppm group has two terminal carbonyl groups, while the other Fe atom has three terminal carbonyl groups. The average $\mathrm{Se}-\mathrm{Co}$ bond distance in $2(2.378 \AA)$ is longer than the average $\mathrm{Se}=\mathrm{Co}$ bond distances in 1 (2.288 \AA) [9]. $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-S\right)\left(\mu_{3}{ }^{3} \mathrm{Se}\right)(2.291 \AA)$ [9] a.d $\mathrm{FeCo}_{2}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{Se}\right)(2.283 \AA)$ [21]. The average $\mathrm{Se}-\mathrm{Fe}$ bond distance in $2(2,411 \AA)$ is longer than the average $\mathrm{Se}-\mathrm{Fe}$ bond distances in $1(2.363 \AA), \mathrm{CpCo}$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}{ }^{-S}\right)\left(\mu_{3}{ }^{-} \mathrm{Se}\right)(2.323 \AA), \mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}{ }_{3} \mathrm{Se}\right)_{2}$ (2.35 \AA) [22] and $\mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-S\right)\left(\mu_{3} \cdot \mathrm{Se}\right)(2.351 \AA)$ [23].

A

B

Fig. 2. Possible isomers of 1.

Scheme 1. Formation of 2 and 3.

It is shorter than the average $\mathrm{Se}-\mathrm{Fe}$ bond distance of $2.437 \AA$ reported for $\mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{Se}\right)\left(\mu_{3}-\mathrm{Te}\right)$ [23]. The average $\mathrm{Co}-\mathrm{Se}-\mathrm{Fe}$ bond angle in $2\left(96^{\circ}\right)$ is larger than the corresponding angle in the parent molecule $1\left(66.7^{\circ}\right)$, but the average bond angles $\mathrm{Se}-\mathrm{Co}-\mathrm{Se}\left(75.5^{\circ}\right)$, $\mathrm{Se}-\mathrm{Fe}-$ $\mathrm{Se}\left(74.3^{\circ}\right)$ and $\mathrm{Fe}-\mathrm{Se}-\mathrm{Fe}\left(63.2^{\circ}\right)$ in 2 are smaller than the corresponding angles in the parent compound 1 (85.5, 82.2 and 97.3° respectively), consistent with the dppm causing a contraction of the $\mathrm{Fe}_{2} \mathrm{CoSe}_{2}$ core, thereby reducing the bond angles in 2 .

The infrared spectra of $\mathbf{2}$ and $\mathbf{3}$ in the carbonyl region show four bands, each between 2052 and $1927 \mathrm{~cm}^{-1}$, indicating the presence of terminally bonded carbonyl groups. The $\nu(\mathrm{CO})$ stretching bands in 2 and 3 are shifted towards lower frequency values with respect to the parent compound 1, consistent with the replacement of carbonyl groups by a stronger donor and weaker π-acceptor ligand. The ${ }^{1}$ H NMR spectrum of 2 shows a doublet of doublet centred at $\delta 3.48 \mathrm{ppm}$ ($J_{\mathrm{H}=\mathrm{P}}=$ 10.4 Hz) for the protons of the CH_{2} group coupled to

Fig. 3. Molecular structure of 2.
two non-equivalent phosphorus atoms, and a single peak at $\delta 4.51 \mathrm{ppm}$ for the Cp ligand. Multiplets in the range $\delta 7.13-7.55 \mathrm{ppm}$ are observed for the phenyl groups.

The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 shows a signal at δ 29.8 ppm for the CH_{2} group, a signal at $\delta 89.2$ due to the $\mathrm{C}_{5} \mathrm{H}_{5}$ group, and a cluster of peaks at δ 128.2132.6 ppm due to the phenyl groups. Two signals, at δ 210.8 and 211.8 ppm , are seen for the CO groups. The ${ }^{31} \mathrm{P}$ NMR spectrum shows two signals at $\delta \mathbf{\delta} .1$ and 60.5 ppm , indicating non-equivalence of the two phosphorus atoms. The ${ }^{77}$ Se NMR spectrum displays a single peak at $\delta-667.6 \mathrm{ppm}$, indicating the equivalent nature of the Se ligands.

The 'H NMR spectrum of $\mathbf{3}$ shows a doublet centred at $\delta 2.21 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{P}}=9 \mathrm{~Hz}\right)$ for the CH_{2} groups coupled with two equivalent phosphorus atoms, and a single peak at $\delta 5.81 \mathrm{ppm}$ for the Cp ligand. Multiplets in the range $\delta 7.38-7.54 \mathrm{ppm}$ are observed for the phenyl groups. The ${ }^{13} \mathrm{C}$ NMR spectrum of 3 shows a signal at $\delta 30.5 \mathrm{ppm}$ for the CH_{2} groups, a signal at δ 81.2 ppm due to the $\mathrm{C}_{5} \mathrm{H}_{5}$ group and a cluster of peaks at $\delta \quad 128.5-132.1 \mathrm{ppm}$ due to the phenyl groups. A signal at $\delta 211.5 \mathrm{ppm}$ is seen for the CO groups. The ${ }^{31} \mathrm{P}$ NMR spectrum shows a signal at $\delta 68.2 \mathrm{ppm}$, indicating the identical environment of the two phosphorus atoms. The ${ }^{77} \mathrm{Se}$ NMR spectrum displays a single peak at $\delta 637.3 \mathrm{ppm}$, indicating the equivalent nature of the Se ligands.

In contrast to the reaction of $\mathrm{CpRhFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Te}\right)_{2}$ with PPh_{3}, which yields two separable isomers, the reaction of 1 with PPh_{3} was found to form a large number of products which could not be separated chromatographically to facilitate their characterisation. With the bidentate phosphines, dppm and dppe, the reaction proceeded cleanly and a reasonable yield of product could be obtained in each case. By analogy with the reaction of the two isomers of $\mathrm{CpRhFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Te}\right)_{2}$ with PPh_{3}, the product expected from our reaction of 1 was one in which one $\mathrm{Fe}-\mathrm{Co}$ bond would be retained. Formation of the product 2 is therefore somewhat unusual.

3. Experimental details

3.1. General procedures

Reactions and manipulations were carried out under an inert atmosphere of argon by means of standard Schlenk techniques. The solvents were dried over appropriate drying agents, and distilled under a nitrogen or argon atmosphere prior to use. Infrared spectra were recorded on a Nicolet Impact 400 FT spectrometer in NaCl cells of $\mathbf{0} .1 \mathrm{~mm}$ pathlength as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and ${ }^{77} \mathrm{Se}$ NMR spectra were obtained on a

Varian VXR-300S spectrometer in CDCl_{3} solution using appropriate references at $25^{\circ} \mathrm{C}$. The ${ }^{77} \mathrm{Se}$ NMR spectra were referenced to $\mathrm{Me}_{2} \mathrm{Se}$ as an extemal standard ($\delta 0 \mathrm{ppm}$) and the spectra were obtained at the operating frequency of $57.23 \mathrm{MHz} ; 90^{\circ}$ pulses were used with 1.0 s delay and 1.0 s acquisition time. Elemental analyses were performed on a Carlo Erba automatic analyser. $\mathrm{CpCoFe}_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Se}_{2}\right.$ (1) was prepared as reported earlier [9]. Bis(diphenylphosphino)methane and 1,2-bis(diphenylphosphino)ethane (Strem) were used as received.

3.2. Reaction of 1 with dppm and dppe

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (25 ml) of $1(0.05 \mathrm{~g}$, 0.089 mmol) was added an equimolar amount of dppm

Table 1
Summary of crystallographic data for compound 2

Crystal data	
Molecular formula	$\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Fe}_{2} \mathrm{CoSe}_{2}$
Molecular weight	918.1
Crystal colour and habit	Dark red, prismatic
Crystal size (mr^{3})	$0.15 \times 0.20 \times 0.10$
Crystal system	monoclinic
Space group	P2 1_{1} / ${ }^{\text {n }}$
Unit cell parameters	
$a(\AA)$	20.705(5)
$b(\AA)$	11.603(4)
$c(\AA)$	32.528(9)
$\left.\beta{ }^{(}\right)$	107.38(2)
$v\left(\AA^{3}\right)$	7108(4)
2	8
$D_{\text {calk }}\left(\mathrm{Mgm}^{-3}\right)$	1.716
Absorption coefficient (min^{-1})	3.445
Data collection	
Diffractometer used	Siemens R3m/V
Radiaton used	Mo K α
Temperature (K)	220
20 range (${ }^{\circ}$)	3.5-44.0
Scan type	ω
Scan width (${ }^{\circ}$)	$1.20{ }^{\circ}+\mathrm{Ka}$ separation
Standard reflections	three measured every 300 reflections
Reflections collected	6863
Observed reflections	2200
$F>6.0 \sigma(F)$	
Absorption correction	Semi-empirical
Max./min. transmission	0.985/0.734
Refinement	
System used	Siemens shilexil-plus (PC version)
Solution	Heavy-atom methods
Refinement method	Full-matrix least-squares
Weighting scheme	$\boldsymbol{w}=\left[\sigma^{2}\left(F_{0}+0.001\left(F_{0}\right)^{2}\right]^{-1}\right.$
No. of parameters refined	497
Final R	0.053
Weighted R	0.057
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right.$)	0.51
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.50
GOF	1.10

Table 2
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{3}$) for 2

Atom	\boldsymbol{x}	y	2	$U_{\text {cq }}$
$\mathrm{Se}(1)$	7825(1)	121(3)	664(1)	36(1)
$\mathrm{Se}(2)$	7533(2)	245(3)	1484(1)	42(1)
$\mathrm{Se}(3)$	7167(2)	1556(3)	-573(1)	41(1)
Se(4)	7564(2)	3004(3)	-1213(1)	40(1)
Co(1)	6754(2)	-66(4)	794(1)	38(2)
$\mathrm{Co}(2)$	8251(2)	1703(4)	-684(1)	40(2)
$\mathrm{Fe}(1)$	8244(2)	1599(4)	1233(1)	41(2)
$\mathrm{Fe}(2)$	8513(2)	-623(4)	1354(1)	36(2)
$\mathrm{Fe}(3)$	6904(2)	3669(4)	-752(1)	46(2)
Fe(4)	6501(2)	1998(4)	-1303(1)	36(2)
$F(1)$	6739(4)	- 2060(8)	775(2)	36(4)
$\mathbf{P}(2)$	8238(4)	-2542(7)	1325(2)	34(4)
$P(3)$	8132(4)	72(8)	- 1082 (2)	34(3)
$\mathrm{P}(4)$	6627(4)	398(8)	-1668(2)	41(4)
C(11)	7734(16)	2931(33)	995(10)	51(11)
C(12)	8965(17)	1858(30)	1100(9)	56(10)
C(13)	8609(17)	2143(32)	1759(11)	67(12)
C(14)	9184(16)	-860(30)	1131(10)	52(11)
C(15)	8994(14)	-560(26)	1897(9)	36(9)
C(16)	6161(17)	3653(31)	-583(10)	60(11)
C(17)	6637(18)	4965(40)	-1114(12)	83(13)
C(18)	7447(18)	4448(33)	-301(11)	70(12)
C(19)	6031(16)	2955(29)	-1737(10)	49(10)
C(20)	5774(15)	1480(27)	-1162(9)	34(9)
O(11)	7455(11)	3720 (2i)	815(7)	87(12)
O(i2)	9503(11)	2003(20)	1021(7)	83(12)
O(13)	8887(14)	2493(23)	2098(7)	122(15)
O(14)	9630(11)	-920(20)	988(7)	84(12)
O(15)	9320(10)	- 482 (20)	2259(6)	79(11)
O(16)	5698(12)	$3387(23)$	$=476(9)$	127(16)
O(17)	$6538(20)$	$5760(25)$	- 1320(9)	197(25)
O(18)	7742(14)	4962(24)	- 4 (8)	124(15)
O(19)	5707(10)	3488(32)	- 2011(7)	92(12)
O(20)	5353(1)	1078(23)	$=1053(7)$	95(13)
C(21)	5684(14)	- 100(27)	$531(8)$	51(9)
C(22)	$6017(13)$	397(37)	2368)	45(9)
C(23)	$6325(13)$	1501(27)	407(8)	46(9)
C(24)	6279(13)	164737)	824 (8)	47(9)
C(25)	5885(13)	622 (26)	901(9)	489)
C(31)	9294(14)	1287(28)	$-419(8)$	54(10)
C(33)	8842 (15)	3161(33)	- 343(9)	71(11)
C(34)	8687(14)	2363(26)	-60(9)	45(9)
C(35)	8969(14)	1215(28)	-77(9)	56(10)
C(4)	7333(12)	- 2925(25)	842(8)	43(9)
C(42)	7276(12)	-640(23)	- $1343(8)$	38(8)
C(51)	6352(14)	- $2815(30)$	1131(9)	53(10)
C(52)	6273(13)	- $4046(27)$	1112(9)	44(9)
C(53)	5979(15)	- 4785(35)	1387 (10)	84(12)
C(54)	5821(16)	-4064(33)	1696(10)	$77(12)$
C(53)	5897(15)	-2857(31)	1742(9)	61(10)
C(56)	6166 (15)	-2217(32)	1452(10)	73(11)
C(61)	6274(14)	-2564(34)	225(8)	34(8)
C(62)	6543(15)	-2292(36)	- 102(9)	56(10)
C(63)	6163(17)	-2579(29)	- $519(10)$	7(12)
C(64)	5351(17)	- 3035(29)	-615(10)	$72(11)$
C(65)	5279(17)	- 3304439)	-298(10)	80(12)
C(66)	3631(14)	- 308 (26)	133(9)	56(10)
C(71)	7975(14)	- 3292(29)	175e(9)	45(9)
C(72)	7933(14)	-4496(30)	1763(9)	60(10)
C(73)	$7748(14)$	- 3084(33)	2087(10)	76 (11)
C(74)	7667(14)	-4504(30)	2417(9)	52(9)

Table 2 (continued)

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}$
C(75)	7725(15)	-3245(31)	2423(10)	64(10)
C(76)	7905(14)	-2646(30)	2101(9)	62(11)
C(81)	8909(13)	-3559(24)	1291(8)	27(8)
C(82)	9467(17)	-3706(31)	1644(10)	79(12)
C(83)	9973(18)	-4411(33)	1620(11)	95(13)
C(84)	10000(15)	-5068(29)	1259(10)	66(10)
C(85)	9451(15)	-4925(30)	911(9)	61(10)
C(86)	8884(14)	-4178(26)	912(9)	49(9)
C(91)	8518(12)	-1177(23)	-740(7)	21(7)
C(92)	$9111(15)$	-1793(29)	-756(9)	64(10)
C(93)	9404(16)	-2672(28)	-474(9)	63(11)
C(94)	9117(16)	-3080(31)	-171(9)	71(11)
C(95)	8538(17)	-2480(29)	-131(10)	78(12)
C(96)	8213(14)	-1639(27)	-438(8)	49(9)
C(101)	8529(12)	91(27)	-1509(7)	33(8)
C(102)	8762(12)	$1196(25)$	-1612(8)	31(8)
C(103)	9059(15)	1282(30)	- 1951(9)	67(11)
C(104)	9108(14)	207(30)	-2167(9)	57(10)
C(105)	8848(16)	-855(32)	-2093(10)	77(12)
C(106)	8555(14)	-915(28)	-1758(9)	53(10)
C(111)	5847(14)	-572(29)	-1835(8)	37(8)
C(112)	5876(16)	-1703(32)	-1745(9)	61(10)
C(113)	5256(19)	-2483(35)	-1879(10)	92(13)
C(114)	4693(18)	-1922(35)	-2091(10)	81(12)
C(115)	4678(20)	-701(37)	-2199(11)	101(14)
C(116)	5282(18)	-31(35)	-2061(10)	82(12)
C(121)	6839(13)	531(27)	-2191(8)	32(8)
C(122)	7136(13)	1524(28)	-2285(8)	47(9)
C(123)	7359(15)	1552(30)	-2666(9)	64(10)
C(124)	7219(14)	574(30)	- 2935(9)	50(10)
C(125)	6913(14)	- 399(29)	-2831(9)	56(10)
C(126)	6706(14)	- 491(30)	-2456(9)	64(10)

- Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i,}$ tensor.
($0.034 \mathrm{~g}, 0.089 \mathrm{mmol}$ for 2) or dppe $(0.035 \mathrm{~g}$. 0.089 mmol for 3) and the reaction mixtures were stirred at room temperature for 36 h . After removal of the solvent in vacuo the residue was subjected to chromatographic work-up on a silica gel column using hexane/dichloromethane ($60: 40, \mathrm{v} / \mathrm{v}$) mixture as eluant to yield dark red $2(0.035 \mathrm{~g}, 43 \%)$ and dark green 3 $(0.03 \mathrm{~g}, 36 \%)$ respectively.

Compound 2. IR ($\nu(\mathrm{CO}), \mathrm{cm}^{-1}$): 2054 (w), 2019 (vs), 1959 (s), 1927 (w), M.p. 220-221 ${ }^{\circ} \mathrm{C}$. Anal. Found: C, 46.3; H, 3.25. $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Fe}_{2} \mathrm{CoSe}_{2}$ Calc.: $\mathrm{C}, 45.8$: H, 2.96\%.

Compound 3. IR ($\boldsymbol{\nu (C O) , ~ \mathrm { cm } ^ { - 1 }) : 2 0 5 4 \text { (w), } 2 0 1 9}$ (vs), 1959 (s), 1927 (w). M.p. 231-232 ${ }^{\circ}$ C. Anal. Found: C. 46.7; $\mathrm{H}, 3.48 . \mathrm{C}_{35} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Fe}_{2} \mathrm{CoSe}_{2}$ Calc.: C. 46.4; H. 3.14\%.

3.3. X-ray diffraction study of compound 2

Dark red crystals of 2 were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solution mixture by slow evaporation of solvent at $-5^{\circ} \mathrm{C}$. The data were collected on a Siemens R3m/V diffractometer under a low-tempera-

Table 3
List of selected bond lengths (\AA) ${ }^{3}$ for 2

$\mathrm{Se}(1)-\mathrm{Co}(1)$	$2.387(5)$	$\mathrm{Fe}(1)-\mathrm{C}(13)$	$1.759(33)$
$\mathrm{Se}(2)-\mathrm{Co}(1)$	$2.366(4)$	$\mathrm{Fe}(2)-\mathrm{C}(14)$	$1.766(38)$
$\mathrm{Se}(1)-\mathrm{Fe}(1)$	$2.427(5)$	$\mathrm{Fe}(2)-\mathrm{C}(15)$	$1.752(25)$
$\mathrm{Se}(1)-\mathrm{Fe}(2)$	$2.414(5)$	$\mathrm{Co}(1)-\mathrm{C}(21)$	$2.124(26)$
$\mathrm{Se}(2)-\mathrm{Fe}(1)$	$2.408(6)$	$\mathrm{Co}(1)-\mathrm{C}(22)$	$2.056(23)$
$\mathrm{Se}(2)-\mathrm{Fe}(2)$	$2.396(6)$	$\mathrm{Co}(1)-\mathrm{C}(23)$	$2.170(28)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.526(6)$	$\mathrm{Co}(1)-\mathrm{C}(24)$	$2.152(30)$
$\mathrm{Co}(1)-\mathrm{P}(1)$	$2.206(9)$	$\mathrm{Co}(1)-\mathrm{C}(25)$	$2.077(30)$
$\mathrm{Fe}(2)-\mathrm{P}(2)$	$2.194(9)$	$\mathrm{P}(1)-\mathrm{C}(51)$	$1.800(35)$
$\mathrm{P}(1)-\mathrm{C}(41)$	$1.858(27)$	$\mathrm{P}(1)-\mathrm{C}(61)$	$1.847(24)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.847(22)$	$\mathrm{P}(2)-\mathrm{C}(71)$	$1.845(33)$
$\mathrm{Fe}(1)-\mathrm{C}(11)$	$1.843(34)$	$\mathrm{P}(2)-\mathrm{C}(81)$	$1.816(28)$
$\mathrm{Fe}(1)-\mathrm{C}(12)$	$1.698(38)$		

${ }^{\text {a }}$ Numbers in parentheses are estimated standard deviations in the least significant digits.
ture nitrogen stream. Final unit cell parameters, given in Table 1, were obtained by a least-squares fit of the angles of 24 accurately centred reflections ($18^{\circ} \leq 2 \theta \leq$ 29°). Relevant data collection conditions are listed in Table 1. Three standard reflections monitored every 150 reflections did not show any significant change in intensity during the data collection. The data were corrected for Lorentz and polarization effects. A semi-empirical

Table 4
List of selected bond angles $\left({ }^{\circ}\right)^{a}$ for 2

Co(1)-Se(1)-Fe(1)	93.6(2)	$\mathrm{Se}(2)-\mathrm{Fe}(2)-\mathrm{C}(15)$	93.5(11)
$\mathrm{Co}(1) \mathrm{Se}(1) \mathrm{Fe}(2)$	97.3(2)	$\mathrm{Fe}(1) \mathrm{Fe}(2)-\mathrm{C}(14)$	104.2(11)
$\mathrm{Co}(1) \mathrm{Se}(2)-\mathrm{Fe}(1)$	94.6(2)	$\mathrm{Fe}(1) \mathrm{Fe}(2)-\mathrm{C}(15)$	98.7(10)
$\mathrm{Co}(1) \mathrm{Se}(2)-\mathrm{Fe}(2)$	98.4(2)	$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{C}(21)$	147.5(8)
$\mathrm{Fe}(1) \mathrm{Se}(1) \mathrm{Fe}(2)$	62.9(2)	$\mathrm{Se}(1)-\mathrm{Co}(1)=\mathrm{C}(22)$	107.8(8)
$\mathrm{Fe}(1)-\mathrm{Se}(2)-\mathrm{Fe}(2)$	$63.4(2)$	$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{C}(23)$	$94.008)$
$\mathrm{Se}(1)-\mathrm{Fe}(1)-\mathrm{Se}(2)$	74.0(2)	$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{C}(24)$	113.2(8)
$\mathrm{Se}(1)=\mathrm{Fe}(2)=\mathrm{Sec}(2)$	$74.5(2)$	$\mathrm{Se}(1)=\mathrm{Co}(1)=\mathrm{C}(25)$	$153.5(8)$
$\mathrm{Se}(1) \mathrm{Fe}(1)-\mathrm{Fe}(2)$	58.3(1)	$\mathrm{Se}(2)=\mathrm{Co}(1)=\mathrm{C}(21)$	135.8(8)
$\mathrm{Se}(2)=\mathrm{Fe}(1)=\mathrm{Fe}(2)$	58.0 (2)	$\mathrm{Se}(2)=\mathrm{Co}(1)=\mathrm{C}(22)$	156.5(8)
$\mathrm{Se}(1) \mathrm{Fe}(2) \mathrm{Fe}(1)$	58.8(1)	$\mathrm{Se}(2)=\mathrm{Co}(1)=\mathrm{C}(23)$	118.67)
$\mathrm{Se}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	58.5(2)	$\mathrm{Se}(2)=\mathrm{Co}(1)=\mathrm{C}(24)$	$91.1(6)$
$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{Se}(2)$	75.5(1)	$\operatorname{Se}(2)-\mathrm{Co}(1)-\mathrm{C}(25)$	99.5(7)
$\mathrm{Se}(1)-\mathrm{CO}(1)-\mathrm{P}(1)$	95.0 (3)	$\mathrm{P}(1)=\mathrm{Co}(1)-\mathrm{C}(21)$	$88.1(9)$
$\operatorname{Se}(2)-\mathrm{Co}(1)-\mathrm{P}(1)$	99.9(2)	$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{C}(22)$	102.9(8)
$\mathrm{Se}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	102.6(2)	$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{C}(23)$	141.5(7)
$\mathrm{Se}(2)-\mathrm{Fe}(2)-\mathrm{P}(2)$	99.9(3)	$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{C}(24)$	151.5(8)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	153.3(3)	$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{C}(25)$	111.4(9)
Co(1)-P(1)-C(41)	120.5(9)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(14)$	93.8(11)
$\mathrm{Fe}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	112.8(9)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(15)$	98.2(10)
$P(1)-C(41)-P(2)$	115.3(15)	$C 0(1)-P(1)-C(51)$	116.9(12)
$\mathrm{Se}(1)-\mathrm{Fe}(1)-\mathrm{C}(11)$	100.9(10)	$C 0(1)-P(1)-C(61)$	109.2(9)
$\mathrm{Se}(1)-\mathrm{Fe}(1)-\mathrm{C}(12)$	93.5(10)	$\mathrm{Fe}(2)-\mathrm{t}$ (2)-C(71)	122.4(11)
$\mathrm{Se}(1)-\mathrm{Fe}(1)-\mathrm{C}(13)$	157.6(12)	$\mathrm{Fe}(2)-\mathrm{P}(2)-\mathrm{C}(81)$	114.0(9)
$\mathrm{Se}(2)-\mathrm{Fe}(1)-\mathrm{C}(11)$	107.9(12)	$C(41)-P(1)-C(51)$	103.5(13)
$\mathrm{Se}(2)-\mathrm{Fe}(1)-\mathrm{C}(12)$	149.8(11)	$C(41)-P(1)-C(61)$	98.3(12)
$\mathrm{Se}(2)-\mathrm{Fe}(1)-\mathrm{C}(13)$	90.6 (13)	$C(41)-P(2)-C(71)$	101.0(12)
$\mathrm{Se}(1)-\mathrm{Fe}(2)-\mathrm{C}(14)$	89.3(9)	$C(41)-P(2)-C(81)$	103.3(12)
$\mathrm{Se}(1)-\mathrm{Fe}(2)-\mathrm{C}(15)$	157.5(10)	$C(51)-P(1)-C(61)$	106.2(13)
$\mathrm{Se}(2)-\mathrm{Fe}(2)-\mathrm{C}(14)$	160.7(10)	$C(71)-P(2)-C(81)$	100.0(13)

[^1]absorption study was applied with max./min. transmission $0.985 / 0.734$ respectively. The structure was solved by heavy-atom methods and subsequent difference Fourier syntheses using the shelxtl-plus package [24]. Two discrete molecules were found in an independent unit. Scattering factors, as well as anomalous dispersion corrections for $\mathrm{P}, \mathrm{Fe}, \mathrm{Co}$ and Se atoms, were taken from the International Tables for X-ray Crystallography [25]. Full-matrix refinements were performed. Atoms of \mathbf{O}, $\mathrm{P}, \mathrm{Fe}, \mathrm{Co}$ and Se were refined anisotropically, while C atoms were treated isotropically. Hydrogen atoms were placed at geometrically idealized positions. The weighting had the form $w\left[\sigma^{2}\left(F_{0}\right)+0.001\left(F_{0}\right)^{2}\right]^{-1}$. Final cycles of refinement cuserged at $R=\Sigma\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{0}\right.\right.$ $=0.053, \quad w R=\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|^{2}\right) / \Sigma w\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2}=$ $0.057, \mathrm{GOF}=1.10$ for 2200 observed reflections [$F\rangle$ $6.0 \sigma(F)]$. The maximum and minimum residuals found on the final difference Fourier map were 0.51 and $-0.50 \mathrm{e}^{-3}$ respectively. The atomic coordinates and equivalent isotropic displacement coefficients are listed in Table 2, whilst bond distances and angles are shown in Tables 3 and 4 respectively. General displacement parameters, bond distances and angles and structure factor tables are available from the authors.

Acknowledgements

We are grateful to Dr. Hongming Zhang of the Southern Methodist University for the single crystal amalysis and to the Department of Science and Technology, Government of India for financial assistance.

References

[1] K.H. Whitmire, J. Coord. Chem., 17 (1988) 95.
[2] N.A. Compton, R.J. Errington and N.C. Norman, Ade. Organomet. Chem. 31 (1990) 91.
[3] L.C. Roof and J.W. Kolis, Chem. Rev., 93 (1993) 1037.
[\uparrow] M.A. Ansari and J.A. Ibers, Coord. Chem. Rev., 100 (1990) 223.
[5] L. Linford and H.G. Raubenheimer, Adv. Organomet. Chem. 32 (1991) 1.
[6] P. Mathur, D. Chakrabarty and I.J. Mavunkal, J. Cluster Sci., 4 (1993) 351.
[7] P. Mathur, D. Chakrabarty, Md.M. Hossain and R.S. Rashid, J. Organomet. Chem., 420 (1991) 79.
[8] P. Mathur, D. Chakrabarty and Md.M. Hossain, J. Organomet. Chem., 401 (1991) 167.
[9] P. Mathur, P. Sekar, C.V.V. Satyanarayana and M.F. Mahon, Organometallics, 14 (1995) 2115.
[10] L.E. Bogan, Jr., D.A. Lesch and T.B. Rauchfuss, J. Organon'er. Chem., 250 (1983) 429.
[11] P. Mathur, D. Chakrabarty, Md.M. Hossain, R.S. Rashid, V. Rugmini and A.L. Rheingold, Inorg. Chem., 31 (1992) 1106.
[12] D.A. Lesch and T.B. Rauchfuss, Inorg. Chem., 20 (1981) 3583.
[13] V.D. Reddy, Ph.D. Thesis, I.I.T., Bombay, 1990.
(14) P. Mathur, Md.M. Hossain and R.S. Rashid, J. Organomet. Chem., 460 (1993) 83.
[15] P. Mathur, I.J. Mavunkal, V. Rugmini and M.F. Mahon, Inorg. Chem., 29 (1990) 4838.
[16] D. Chakrabarty, Md.M. Hossain, R.K. Kumar and P. Mathur, J. Orgamomet. Chem., 410 (1991) 143.
[17] R.D. Adams, J.E. Babin, J.-G. Wang and W. Wu, Inorg. Chem., 28 (1989) 703.
[18] Y. Wakatsuki, H. Yamazaki and G. Cheng, J. Organomet. Chem., 347 (1988) 151.
[19] M. Cowie, R.L. DeKock, T.R. Wagenmaker, D. Seyferth, R.S. Henderson and M.K. Gallagher, Organometallics, 8 (1989) 119.
[20] D.A. Lesch and T.B. Rauchfuss, Inorg. Chem., 22 (1983) 1854.
[21] C.E. Strouse and L.F. Dahl, J. Am. Chem. Soc., 93 (1971) 6032.
[22] L.F. Dahl and P.W. Sutton, Inorg. Chem., 2 (1963) 1067.
[23] G. Gervasio, J. Organomet. Chem., 445 (1993) 147.
[24] G.M. Sheldrick, shelxm-plus, Siemens Analytical X-ray Instruments, Inc., 1990.
[25] International Tables for X-ray Crystallography, Vol. IV, Kynock Press, Birmingham, UK, 1974.

[^0]: ${ }^{*}$ Corresponding author.

[^1]: ${ }^{1}$ Numbers in parentheses are estimated standard deviations in the least significant digits.

