

Journal of Organometallic Chemistry 527 (1997) 29-34

Synthesis and spectroscopic characterisation of $CpCoFe_2(CO)_5(\mu_3-Se)_2(P \cap P)$ [P $\cap P = dppm \text{ or } dppe$]: crystal structure of $CpCoFe_2(CO)_5(\mu_3-Se)_2(dppm)$

Pradeep Mathur *, P. Sekar

Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 076, India

Received 4 April 1996; revised 26 June 1996

Abstract

The room temperature reactions of $CpCoFe_2(CO)_6(\mu_3-Se)_2$ (1) with bis(diphenylphosphino)methane and 1,2bis(diphenylphosphino)ethane gave the phosphine derivatives of mixed-metal chalcogen clusters, $CpCoFe_2(CO)_5(\mu_3-Se)_2(P \cap P)$ [P $\cap P = dppm$ (2), dppe (3)], respectively. Compounds 2 and 3 have been characterised by IR, and ¹H, ¹³C, ³¹P and ⁷⁷Se NMR spectroscopy and their compositions have been confirmed by elemental analysis. The structure of 2 has been elucidated by X-ray crystallography. Compound 2 crystallised in the monoclinic, space group $P2_1/n$, with a = 20.705(5), b = 11.603(4), c = 32.528(9)Å, $\beta = 107.38(2)^\circ$, V = 7108(4)Å³, Z = 8, $D_c = 1.716$ Mg m⁻³ and R = 0.053 (Rw = 0.057). The structure consists of an Fe₂CoSe₂ metal core in which the dppm ligand bridges Co and one of the Fe atoms.

Keywords: Iron; Cobalt; Selenium; Phosphorous; Carbonyl; Cluster

1. Introduction

Bridging chalcogens play an important role in the synthesis and stabilisation of transition metal cluster compounds, including mixed-metal clusters [1-5]. Work on the use of S, Se and Te has shown that cluster syntheses and structures of products formed depend on which chalcogen is used [6]. The availability of mixedchalcogenide transition metal carbonyl complexes, as starting materials for cluster growth reactions, has given additional variety to the types of cluster which can be obtained by using chalcogens as bridging ligands [7–9]. One class of compounds which are convenient as starting materials for the preparation of metal-chalcogenide clusters is $Fe_2(CO)_6(\mu - EE')$, where E, E' = S, Se or Te [7-12]. The simplest type of cluster growth products obtained from these are compounds of the form $Fe_2 M(CO)_0(\mu_2 - E)(\mu_2 - E')$, where M = Fe, Ru, which are formed by a formal addition of M across the reactive E-E' bond of $Fe_2(CO)_6(\mu$ -EE'), followed by one Fe-M bond formation to give a square-pyramidal core of Fe₂MEE', where M occupies a basal site [7,8,13-16]. There are instances, however, where the heterometal atom occupies the apical site of the square pyramid [11,17-19]. The cluster CpRhFe₂(CO)₆(μ_3 -Te)₂ exists in solution as an equilibrating mixture of the two forms, one in which the rhodium is in a basal site and the other in which it occupies the apical site of the RhFe₂Te₂ square pyramid [20]. Reactions of $CpRhFe_2(CO)_6(\mu_3$ -Te)₂ with PPh₃ yield two isomers: in the major isomer, the phosphine is bonded to an Rh atom while the minor isomer is proposed to contain the Fe(CO)₃(PPh₃) moiety (Fig. 1). In an earlier report, we described the synthesis and structures of $CpCoFe_2(CO)_6(\mu_3-Se)_2$ (1) and $CpCoFe_2(CO)_6(\mu_3-S)(\mu_3-Se)$, both of which have the Co atom occupying the apical site of the squarepyramidal core (type A) [9]. The second form, in which the Co occupies a basal site (type B), is not observed (Fig. 2). Here we describe the reactions of 1 with the bidentate phosphines bis(diphenylphosphino)methane

^{*} Corresponding author.

Fig. 1. Reactions of the two isomers of $CpRhFe_2(CO)_6(\mu_3-Te)_2$ with PPh₃.

and 1,2-bis(diphenylphosphino)ethane, along with the single crystal X-ray diffraction analysis of $CpCoFe_2(CO)_5(\mu_3-Se)_2(dppm)$ (2).

2. Results and discussion

When a CH₂Cl₂ solution containing 1 and bis(diphenylphosphino)methane (dppm) or 1,2-bis(diphenylphosphino)ethane (dppe) was stirred at room temperature for 36 h, dark red CpCoFe₂(CO)₅(μ_3 -Se)₂(dppm) (2) or dark green CpCoFe₂(CO)₅(μ_3 -Se)₂(dppe) (3) was obtained as the major product after chromatographic work-up (Scheme 1). Compounds 2 and 3 have been characterised by IR and ¹H, ¹³C, ³¹P and ⁷⁷Se NMR spectroscopy. Their elemental compositions have been confirmed by elemental analysis.

An ORTEP diagram of the molecular structure of 2 is shown in Fig. 3. The structure of 2 can be described as consisting of an Fe₂CoSe₂ metal core and a dppm group bridging Co and one of the Fe atoms. The Fe atom associated with the dppm group has two terminal carbonyl groups, while the other Fe atom has three terminal carbonyl groups. The average Se-Co bond distance in 2 (2.378 Å) is longer than the average Se-Co bond distances in 1 (2.288 Å) [9], CpCoFe₂(CO)₆(μ_3 -S)(μ_3 -Se) (2.291 Å) [9] and FeCo₂(CO)₉(μ_3 -Se) (2.283 Å) [21]. The average Se-Fe bond distances in 1 (2.363 Å), CpCo-Fe₂(CO)₆(μ_3 -S)(μ_3 -Se) (2.323 Å), Fe₃(CO)₉(μ_3 -Se), (2.35 Å) [22] and Fe₃(CO)₉(μ_3 -Se), (2.351 Å) [23].

Fig. 2. Possible isomers of 1.

Scheme 1. Formation of 2 and 3.

It is shorter than the average Se-Fe bond distance of 2.437 Å reported for Fe₃(CO)₉(μ_3 -Se)(μ_3 -Te) [23]. The average Co-Se-Fe bond angle in 2 (96°) is larger than the corresponding angle in the parent molecule 1 (66.7°), but the average bond angles Se-Co-Se (75.5°), Se-Fe-Se (74.3°) and Fe-Se-Fe (63.2°) in 2 are smaller than the corresponding angles in the parent compound 1 (85.5, 82.2 and 97.3° respectively), consistent with the dppm causing a contraction of the Fe₂CoSe₂ core, thereby reducing the bond angles in 2.

The infrared spectra of 2 and 3 in the carbonyl region show four bands, each between 2052 and 1927 cm⁻¹, indicating the presence of terminally bonded carbonyl groups. The ν (CO) stretching bands in 2 and 3 are shifted towards lower frequency values with respect to the parent compound 1, consistent with the replacement of carbonyl groups by a stronger donor and weaker π -acceptor ligand. The ¹H NMR spectrum of 2 shows a doublet of doublet centred at δ 3.48 ppm ($J_{H-P} =$ 10.4 Hz) for the protons of the CH₂ group coupled to

Fig. 3. Molecular structure of 2.

received.

two non-equivalent phosphorus atoms, and a single peak at δ 4.51 ppm for the Cp ligand. Multiplets in the range δ 7.13-7.55 ppm are observed for the phenyl groups.

The ¹³C NMR spectrum of 2 shows a signal at δ 29.8 ppm for the CH₂ group, a signal at δ 89.2 due to the C₅H₅ group, and a cluster of peaks at δ 128.2–132.6 ppm due to the phenyl groups. Two signals, at δ 210.8 and 211.8 ppm, are seen for the CO groups. The ³¹P NMR spectrum shows two signals at δ 60.1 and 60.5 ppm, indicating non-equivalence of the two phosphorus atoms. The ⁷⁷Se NMR spectrum displays a single peak at δ – 667.6 ppm, indicating the equivalent nature of the Se ligands.

The ¹H NMR spectrum of 3 shows a doublet centred at δ 2.21 ppm ($J_{H-P} = 9$ Hz) for the CH₂ groups coupled with two equivalent phosphorus atoms, and a single peak at δ 5.81 ppm for the Cp ligand. Multiplets in the range δ 7.38–7.54 ppm are observed for the phenyl groups. The ¹³C NMR spectrum of 3 shows a signal at δ 30.5 ppm for the CH₂ groups, a signal at δ 81.2 ppm due to the C₅H₅ group and a cluster of peaks at δ 128.5–132.1 ppm due to the phenyl groups. A signal at δ 211.5 ppm is seen for the CO groups. The ³¹P NMR spectrum shows a signal at δ 68.2 ppm, indicating the identical environment of the two phosphorus atoms. The ⁷⁷Se NMR spectrum displays a single peak at δ 637.3 ppm, indicating the equivalent nature of the Se ligands.

In contrast to the reaction of CpRhFe₂(CO)₆(μ_3 -Te)₂ with PPh₃, which yields two separable isomers, the reaction of 1 with PPh₃ was found to form a large number of products which could not be separated chromatographically to facilitate their characterisation. With the bidentate phosphines, dppm and dppe, the reaction proceeded cleanly and a reasonable yield of product could be obtained in each case. By analogy with the reaction of the two isomers of CpRhFe₂(CO)₆(μ_3 -Te)₂ with PPh₃, the product expected from our reaction of 1 was one in which one Fe-Co bond would be retained. Formation of the product 2 is therefore somewhat unusual.

3. Experimental details

3.1. General procedures

Reactions and manipulations were carried out under an inert atmosphere of argon by means of standard Schlenk techniques. The solvents were dried over appropriate drying agents, and distilled under a nitrogen or argon atmosphere prior to use. Infrared spectra were recorded on a Nicolet Impact 400 FT spectrometer in NaCl cells of 0.1 mm pathlength as CH_2Cl_2 solutions. ¹H, ¹³C, ³¹P and ⁷⁷Se NMR spectra were obtained on a Varian VXR-300S spectrometer in CDCl₃ solution using appropriate references at 25 °C. The ⁷⁷Se NMR spectra were referenced to Me₂Se as an external standard (δ 0ppm) and the spectra were obtained at the operating frequency of 57.23 MHz; 90° pulses were used with 1.0s delay and 1.0s acquisition time. Elemental analyses were performed on a Carlo Erba automatic analyser. CpCoFe₂(CO)₆(μ_3 -Se)₂ (1) was prepared as reported earlier [9]. Bis(diphenylphosphino)methane and 1,2-bis(diphenylphosphino)ethane (Strem) were used as

3.2. Reaction of 1 with dppm and dppe

To a CH_2Cl_2 solution (25 ml) of 1 (0.05 g, 0.089 mmol) was added an equimolar amount of dppm

Table 1

Summary of crystallographic da	ita for compound 2
Crystal data	
Molecular formula	$C_{35}H_{27}O_5P_2Fe_2CoSe_2$
Molecular weight	918.1
Crystal colour and habit	Dark red, prismatic
Crystal size (mm ³)	0.15×0.20×0.10
Crystal system	monoclinic
Space group	$P2_1/n$
Unit cell parameters	
a (Å)	20.705(5)
b (Å)	11.603(4)
c (Å)	32.528(9)
β (°)	107.38(2)
V (Å ³)	7108(4)
Z	8
D_{cale} (Mg m ⁻³)	1.716
Absorption coefficient	3.445
(mm ^{= 1})	
Data collection	
Diffractometer used	Siemens R3m/V
Radiation used	Μο Κα
Temperature (K)	220
2θ range (°)	3.5-44.0
Scan type	ω
Scan width (°)	1.20° + Ka separation
Standard reflections	three measured every
	300 reflections
Reflections collected	6863
Observed reflections	2200
$F > 6.0\sigma(F)$	
Absorption correction	Semi-empirical
Max./min. transmission	0.985/0.734
Refinement	
System used	Siemens SHELXTL-PLUS
	(PC version)
Solution	Heavy-atom methods
Refinement method	Full-matrix least-squares
Weighting scheme	$w = [\sigma^2 (F_0 + 0.001(F_0)^2)^{-1}]$
No. of parameters refined	497
Final R	0.053
Weighted R	0.057
$\Delta \rho_{\rm max}$ (e Å ⁻³)	0.51
$\Delta \rho_{\rm min}$ (eÅ ⁻³)	-0.50
GOF	1.10
-	

Table 2 (continued)

Table 2 Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement coefficients $(Å^2 \times 10^3)$ for 2

Atom	x	у	Z	U _{eq}
Se(1)	7825(1)	121(3)	664(1)	36(1)
Se(2)	7533(2)	245(3)	1484(1)	42(1)
Se(3)	7167(2)	1556(3)	- 573(1)	41(1)
Se(4)	7564(2)	3004(3)	-1213(1)	40(1)
Co(1)	6754(2)	-00(4)	/94(1)	38(2)
CO(2)	8231(2) 9744(7)	1500(4)	1233(1)	41(2)
FC(1) Ea(2)	8513(2)	- 623(4)	1354(1)	36(2)
Fe(3)	6904(2)	3669(4)	- 752(1)	46(2)
Fe(4)	6501(2)	1998(4)	- 1303(1)	36(2)
P(1)	6739(4)	- 2060(8)	775(2)	36(4)
P(2)	8238(4)	- 2542(7)	1325(2)	34(4)
P(3)	8132(4)	72(8)	- 1082(2)	34(3)
P(4)	6627(4)	398(8)	- 1668(2)	41(4)
C (11)	7734(16)	2931(33)	995(10)	51(11)
α	8903(17)	1858(30)	1760(11)	50(10)
	0194(16)	2143(32) 860(30)	1131(10)	52(11)
C(14)	910-(10) 9004(14)	- 560(26)	1897(9)	36(9)
Q16)	6161(17)	3653(31)	- 583(10)	60(11)
α(17)	6637(18)	4965(40)	-1114(12)	83(13)
C(18)	7447(18)	4448(33)	- 301(11)	70(12)
C(19)	6031(16)	2955(29)	- 1737(10)	49(10)
C(20)	5774(15)	1480(27)	-1162(9)	34(9)
0(11)	7455(11)	3720(21)	815(7)	87(12)
O(12)	9503(11)	2003(20)	1021(7)	83(12)
O(13)	8887(14)	2493(23)	2098(7)	122(15)
0(14)	9030(11) 0330(10)	- 920(20) - 487(70)	900(7) 7750(6)	70(11)
Q(16)	560R(12)	3587(23)	= 476(Q)	127(16)
0(17)	6528(20)	5760(25)	- 1320(9)	197(25)
O(18)	7742(14)	4962(24)	- 4(8)	124(15)
O(19)	5707(10)	3488(22)	- 2011(7)	92(12)
O(20)	5353(11)	1078(23)	- 1053(7)	95(13)
C(21)	5684(14)	- 100(27)	531(8)	51(9)
C(22)	6017(13)	397(27)	236(8)	45(9)
C(23)	0323(13) 6350(13)	1301(27) 1647(33)	40/(8) 93 <i>4</i> (9)	40(9) 49(0)
C(24) (())5)	9279(19) SRRS(13)	632(26)	024(0) 001(0)	4/(9) 49(0)
α_{31}	9294(14)	1287(28)	- 419(8)	54(10)
C(33)	8842(15)	3161(33)	- 343(9)	71(11)
C(34)	8687(14)	2363(26)	- 60(9)	45(9)
C(35)	8969(14)	1215(28)	- 77(9)	56(10)
C(41)	7533(12)	- 2925(25)	842(8)	43(9)
C(42)	7276(12)	- 649(23)	- 1343(8)	38(8)
C(31)	6352(14)	= 2815(30)	1131(9)	53(10)
C(32)	04/3(13) 8070(18)	- 4040(27) - 4788(26)	1112(9)	44(9) 84(10)
C(55) C(54)	5979(15) 5871(16)	- 4765(33) - 4064(33)	1606(10)	09(12) 77(12)
C(55)	5897(15)	- 2857(31)	1747(0)	61(10)
C(56)	6166(15)	-2217(32)	1452(10)	73(11)
C(61)	6274(14)	- 2564(24)	225(8)	34(8)
C(62)	6543(15)	- 2292(26)	- 102(9)	56(10)
C(63)	6163(17)	- 2579(29)	- 519(10)	79(12)
C(64)	5551(17)	- 3035(29)	- 615(10)	72(11)
C(65)	5279(17)	- 3304(29)	- 298(10)	80(12)
C(66)	5631(14)	- 3084(26)	133(9)	56(10)
C(1)	7975(14)	- 3292(29)	1756(9)	45(9)
α_{m}	1933(14) 7748(14)	- 4496(30)	1763(9)	60(10)
C(73)	7740(14) 7667(14)	- JU84(JJ) - 4804(JD)	2087(10)	70(11)
W/14/	/00/(14)	- 4304(30)	2417(9)	52(9)

continueu/			
x	у	z	U _{eq}
7725(15)	- 3245(31)	2423(10)	64(10)
7905(14)	- 2646(30)	2101(9)	62(11)
8909(13)	- 3559(24)	1291(8)	27(8)
9467(17)	- 3706(31)	1644(10)	79(12)
9973(18)	- 4411(33)	1620(11)	95(13)
10000(15)	- 5068(29)	1259(10)	66(10)
9451(15)	- 4925(30)	911(9)	61(10)
8884(14)	- 4178(26)	912(9)	49(9)
8518(12)	- 1177(23)	- 740(7)	21(7)
9111(15)	- 1793(29)	- 756(9)	64(10)
9404(16)	- 2672(28)	- 474(9)	63(11)
9117(16)	- 3080(31)	- 171(9)	71(11)
8538(17)	- 2480(29)	- 131(10)	78(12)
8213(14)	- 1639(27)	- 438(8)	49(9)
8529(12)	91(27)	- 1509(7)	33(8)
8762(12)	1196(25)	- 1612(8)	31(8)
9059(15)	1282(30)	- 1951(9)	67(11)
9108(14)	207(30)	- 2167(9)	57(10)
8848(16)	- 855(32)	- 2093(10)	77(12)
8555(14)	- 915(28)	- 1758(9)	53(10)
5847(14)	- 572(29)	- 1835(8)	37(8)
5876(16)	- 1703(32)	1745(9)	61(10)
5256(19)	- 2483(35)	- 1879(10)	92(13)
4693(18)	- 1922(35)	- 2091(10)	81(12)
4678(20)	- 701(37)	-2199(11)	101(14)
5282(18)	- 31(35)	- 2061(10)	82(12)
6839(13)	531(27)	- 2191(8)	32(8)
7136(13)	1524(28)	- 2285(8)	47(9)
7359(15)	1552(30)	- 2666(9)	64(10)
7219(14)	574(30)	- 2935(9)	60(10)
6913(14)	- 399(29)	2831(9)	56(10)
6706(14)	- 491(30)	- 2456(9)	64(10)
	x 7725(15) 7905(14) 8909(13) 9467(17) 9973(18) 10000(15) 9451(15) 8884(14) 8518(12) 9111(15) 9404(16) 9117(16) 8538(17) 8213(14) 8529(12) 8762(12) 9059(15) 9108(14) 8848(16) 8555(14) 5847(14) 58555(14) 5256(19) 4693(18) 4678(20) 5282(18) 6839(13) 7136(13) 7359(15) 7219(14) 6913(14) 6706(14)	xy x y7725(15) $-3245(31)$ 7905(14) $-2646(30)$ 8909(13) $-3559(24)$ 9467(17) $-3706(31)$ 9973(18) $-4411(33)$ 10000(15) $-5068(29)$ 9451(15) $-4925(30)$ 8884(14) $-4178(26)$ 8518(12) $-1177(23)$ 9111(15) $-1793(29)$ 9404(16) $-2672(28)$ 9117(16) $-3080(31)$ 8538(17) $-2480(29)$ 8213(14) $-1639(27)$ 8529(12)91(27)8762(12)1196(25)9059(15)1282(30)9108(14)207(30)8848(16) $-855(32)$ 8555(14) $-915(28)$ 5847(14) $-572(29)$ 5876(16) $-1703(32)$ 5256(19) $-2483(35)$ 4693(18) $-1922(35)$ 4678(20) $-701(37)$ 5282(18) $-31(35)$ 6839(13)531(27)7136(13)1524(28)7359(15)1552(30)7219(14) $574(30)$ 6913(14) $-399(29)$ 6706(14) $-491(30)$	xyz7725(15) $-3245(31)$ $2423(10)$ 7905(14) $-2646(30)$ $2101(9)$ 8909(13) $-3559(24)$ $1291(8)$ 9467(17) $-3706(31)$ $1644(10)$ 9973(18) $-4411(33)$ $1620(11)$ 10000(15) $-5068(29)$ $1259(10)$ 9451(15) $-4925(30)$ $911(9)$ 8884(14) $-4178(26)$ $912(9)$ 8518(12) $-1177(23)$ $-740(7)$ 9111(15) $-1793(29)$ $-756(9)$ 9404(16) $-2672(28)$ $-474(9)$ 9117(16) $-3080(31)$ $-171(9)$ 8538(17) $-2480(29)$ $-131(10)$ 8213(14) $-1639(27)$ $-438(8)$ 8529(12) $91(27)$ $-1509(7)$ 8762(12) $1196(25)$ $-1612(8)$ 9059(15) $1282(30)$ $-1951(9)$ 9108(14) $207(30)$ $-2167(9)$ 8848(16) $-855(32)$ $-2093(10)$ 8555(14) $-915(28)$ $-1758(9)$ 5876(16) $-1703(32)$ $-1745(9)$ 5256(19) $-2483(35)$ $-1879(10)$ 4693(18) $-1922(35)$ $-2091(10)$ 4678(20) $-701(37)$ $-2199(11)$ 5282(18) $-31(35)$ $-2285(8)$ 7359(15) $1552(30)$ $-2285(8)$ 7359(15) $1552(30)$ $-2666(9)$ 7219(14) $574(30)$ $-2935(9)$ 6913(14) $-399(29)$ $-2831(9)$ 6706(14) $-491(30)$ $-2456(9)$

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

(0.034 g, 0.089 mmol for 2) or dppe (0.035 g, 0.089 mmol for 3) and the reaction mixtures were stirred at room temperature for 36 h. After removal of the solvent in vacuo the residue was subjected to chromatographic work-up on a silica gel column using hexane/dichloromethane (60:40, v/v) mixture as eluant to yield dark red 2 (0.035 g, 43%) and dark green 3 (0.03 g, 36%) respectively.

Compound 2. IR (ν (CO), cm⁻¹): 2054 (w), 2019 (vs), 1959 (s), 1927 (w). M.p. 220–221 °C. Anal. Found: C, 46.3; H, 3.25. C₃₅H₂₇O₅P₂Fe₂CoSe₂ Calc.: C, 45.8; H, 2.96%.

Compound 3. IR (ν (CO), cm⁻¹): 2054 (w), 2019 (vs), 1959 (s), 1927 (w). M.p. 231–232 °C. Anal. Found: C, 46.7; H, 3.48. C₃₅H₂₇O₅P₂Fe₂CoSe₂ Calc.: C, 46.4; H, 3.14%.

3.3. X-ray diffraction study of compound 2

Dark red crystals of 2 were grown from a CH_2Cl_2 /hexane solution mixture by slow evaporation of solvent at -5 °C. The data were collected on a Siemens R3m/V diffractometer under a low-tempera-

Table 3 List of selected bond lengths (Å) ^a for 2

	-			
Se(1)-Co(1)	2.387(5)	Fe(1)-C(13)	1.759(33)	-
Se(2)-Co(1)	2.366(4)	Fe(2)-C(14)	1.766(38)	
Se(1)-Fe(1)	2.427(5)	Fe(2)-C(15)	1.752(25)	
Se(1)-Fe(2)	2.414(5)	Co(1)-C(21)	2.124(26)	
Se(2)-Fe(1)	2.408(6)	$C_{0}(1) - C(22)$	2.056(23)	
Se(2)-Fe(2)	2.396(6)	Co(1)-C(23)	2.170(28)	
Fe(1)-Fe(2)	2.526(6)	Co(1) - C(24)	2.152(30)	
$C_{0}(1) - P(1)$	2.206(9)	Co(1)-C(25)	2.077(30)	
Fe(2)-P(2)	2.194(9)	P(1)-C(51)	1.800(35)	
P(1)-C(41)	1.858(27)	P(1)-C(61)	1.847(24)	
P(2)-C(41)	1.847(22)	P(2)-C(71)	1.845(33)	
Fe(1)-C(11)	1.843(34)	P(2)-C(81)	1.816(28)	
Fe(1)-C(12)	1.698(38)			

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

ture nitrogen stream. Final unit cell parameters, given in Table 1, were obtained by a least-squares fit of the angles of 24 accurately centred reflections ($18^\circ \le 2\theta \le 29^\circ$). Relevant data collection conditions are listed in Table 1. Three standard reflections monitored every 150 reflections did not show any significant change in intensity during the data collection. The data were corrected for Lorentz and polarization effects. A semi-empirical

Table 4

List of selected bond angles (°) ^a for 2

	-		and the second se
Co(1)-Se(1)-Fe(1)	93.6(2)	Se(2)-Fe(2)-C(15)	93.5(11)
Co(1)=Se(1)=Fe(2)	97.3(2)	Fe(1)-Fe(2)-C(14)	104.2(11)
Co(1)-Se(2)-Fe(1)	94.6(2)	Fe(1)-Fe(2)-C(15)	98.7(10)
Co(1)-Se(2)-Fe(2)	98.4(2)	Se(1)-Co(1)-C(21)	147.5(8)
Fe(1)-Se(1)=Fe(2)	62.9(2)	Se(1)-Co(1)-C(22)	107.8(8)
Fe(1)-Se(2)-Fe(2)	63.4(2)	Se(1)-Co(1)-C(23)	94.0(8)
Se(1)-Fe(1)-Se(2)	74.0(2)	Se(1)=Co(1)=C(24)	113.2(8)
Se(1)=Fe(2)=Se(2)	74.5(2)	Se(1)-Co(1)-C(25)	153.5(8)
Se(1)-Fe(1)-Fe(2)	58.3(1)	Se(2)=Co(1)=C(21)	135.8(8)
Se(2)-Fe(1)-Fe(2)	58.0(2)	Se(2)-Co(1)-C(22)	156.5(8)
Se(1)-Fe(2)-Fe(1)	58.8(1)	Se(2)-Co(1)-C(23)	118.6(7)
Se(2)-Fe(2)-Fe(1)	58.5(2)	Se(2)=Co(1)=C(24)	91.1(6)
Se(1)=Co(1)=Se(2)	75.5(1)	Se(2)-Co(1)-C(25)	99.5(7)
Se(1) - Co(1) - P(1)	95.0(3)	P(1)-Co(1)-C(21)	88.1(9)
Se(2)-Co(1)-P(1)	99.9(2)	P(1)-Co(1)-C(22)	102.9(8)
Se(1)-Fe(2)-P(2)	102.6(2)	P(1)-Co(1)-C(23)	141.5(7)
Se(2)-Fe(2)-P(2)	99.9(3)	P(1)-Co(1)-C(24)	151.5(8)
Fe(1) - Fe(2) - P(2)	153.3(3)	P(1)-Co(1)-C(25)	111.4(9)
Co(1)-P(1)-C(41)	120.5(9)	P(2)-Fe(2)-C(14)	93.8(11)
Fe(2)-P(2)-C(41)	112.8(9)	P(2)-Fe(2)-C(15)	98.2(10)
P(1)-C(41)-P(2)	115.3(15)	Co(1)-P(1)-C(51)	116.9(12)
Se(1) - Fe(1) - C(11)	100.9(10)	$C_0(1) - P(1) - C(61)$	109.2(9)
Se(1)-Fe(1)-C(12)	93.5(10)	Fe(2)_F(2)_C(71)	122.4(11)
Se(1)-Fe(1)-C(13)	157.6(12)	Fe(2)-14(2)-C(81)	114.0(9)
Se(2)-Fe(1)-C(11)	107.9(12)	C(41)-P(1)-C(51)	103.5(13)
Se(2)-Fe(1)-C(12)	149.8(11)	C(41)-P(1)-C(61)	98.3(12)
Se(2)-Fe(1)-C(13)	90.6(13)	C(41)P(2)C(71)	101.9(12)
Se(1)-Fe(2)-C(14)	89.3(9)	C(41)-P(2)-C(81)	103.3(12)
Se(1)-Fe(2)-C(15)	157.5(10)	C(51)-P(1)-C(61)	106.2(13)
Se(2)-Fe(2)-C(14)	160.7(10)	C(71)-P(2)-C(81)	100.0(13)
			الالفاقط الأنابي ويعوا لغالهم ويرتعنهم

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

absorption study was applied with max./min. transmission 0.985/0.734 respectively. The structure was solved by heavy-atom methods and subsequent difference Fourier syntheses using the SHELXTL-PLUS package [24]. Two discrete molecules were found in an independent unit. Scattering factors, as well as anomalous dispersion corrections for P, Fe, Co and Se atoms, were taken from the International Tables for X-ray Crystallography [25]. Full-matrix refinements were performed. Atoms of O, P, Fe, Co and Se were refined anisotropically, while C atoms were treated isotropically. Hydrogen atoms were placed at geometrically idealized positions. The weighting had the form $w[\sigma^{2}(F_{0}) + 0.001(F_{0})^{2}]^{-1}$. Final cycles of refinement converged at $R = \sum ||F_0| - |F_c|| / \sum |F_0|$ = 0.053, $wR = [\Sigma w(|F_0| - |F_c|^2) / \Sigma w(F_0)^2]^{1/2} =$ 0.057, GOF = 1.10 for 2200 observed reflections [F > $6.0\sigma(F)$]. The maximum and minimum residuals found on the final difference Fourier map were 0.51 and $-0.50 \,\mathrm{e}\,\mathrm{\AA}^{-3}$ respectively. The atomic coordinates and equivalent isotropic displacement coefficients are listed in Table 2, whilst bond distances and angles are shown in Tables 3 and 4 respectively. General displacement parameters, bond distances and angles and structure factor tables are available from the authors.

Acknowledgements

We are grateful to Dr. Hongming Zhang of the Southern Methodist University for the single crystal analysis and to the Department of Science and Technology, Government of India for financial assistance.

References

- [1] K.H. Whitmire, J. Coord. Chem., 17 (1988) 95.
- [2] N.A. Compton, R.J. Errington and N.C. Norman, Adv. Organomet. Chem., 31 (1990) 91.
- [3] L.C. Roof and J.W. Kolis, Chem. Rev., 93 (1993) 1037.
- [4] M.A. Ansari and J.A. Ibers, Coord. Chem. Rev., 100 (1990) 223.
- [5] L. Linford and H.G. Raubenheimer, Adv. Organomet. Chem., 32 (1991) 1.
- [6] P. Mathur, D. Chakrabarty and I.J. Mavunkal, J. Cluster Sci., 4 (1993) 351.
- [7] P. Mathur, D. Chakrabarty, Md.M. Hossain and R.S. Rashid, J. Organomet. Chem., 420 (1991) 79.
- [8] P. Mathur, D. Chakrabarty and Md.M. Hossain, J. Organomet. Chem., 401 (1991) 167.
- [9] P. Mathur, P. Sekar, C.V.V. Satyanarayana and M.F. Mahon, Organometallics, 14 (1995) 2115.
- [10] L.E. Bogan, Jr., D.A. Lesch and T.B. Rauchfuss, J. Organomet. Chem., 250 (1983) 429.
- [11] P. Mathur, D. Chakrabarty, Md.M. Hossain, R.S. Rashid, V. Rugmini and A.L. Rheingold, *Inorg. Chem.*, 31 (1992) 1106.
- [12] D.A. Lesch and T.B. Rauchfuss, Inorg. Chem., 20 (1981) 3583.
- [13] V.D. Reddy, Ph.D. Thesis, I.I.T., Bombay, 1990.

- [14] P. Mathur, Md.M. Hossain and R.S. Rashid, J. Organomet. Chem., 460 (1993) 83.
- [15] P. Mathur, I.J. Mavunkal, V. Rugmini and M.F. Mahon, *Inorg. Chem.*, 29 (1990) 4838.
- [16] D. Chakrabarty, Md.M. Hossain, R.K. Kumar and P. Mathur, J. Organomet. Chem., 410 (1991) 143.
- [17] R.D. Adams, J.E. Babin, J.-G. Wang and W. Wu, Inorg. Chem., 28 (1989) 703.
- [18] Y. Wakatsuki, H. Yamazaki and G. Cheng, J. Organomet. Chem., 347 (1988) 151.
- [19] M. Cowie, R.L. DeKock, T.R. Wagenmaker, D. Seyferth, R.S. Henderson and M.K. Gallagher, Organometallics, 8 (1989) 119.
- [20] D.A. Lesch and T.B. Rauchfuss, Inorg. Chem., 22 (1983) 1854.
- [21] C.E. Strouse and L.F. Dahl, J. Am. Chem. Soc., 93 (1971) 6032.
- [22] L.F. Dahl and P.W. Sutton, Inorg. Chem., 2 (1963) 1067.
- [23] G. Gervasio, J. Organomet. Chem., 445 (1993) 147.
- [24] G.M. Sheldrick, SHELXTL-PLUS, Siemens Analytical X-ray Instruments, Inc., 1990.
- [25] International Tables for X-ray Crystallography, Vol. IV, Kynock Press, Birmingham, UK, 1974.